History based forward and feedback mechanism in cooperative spectrum sensing including malicious users in cognitive radio network
نویسندگان
چکیده
In cognitive radio communication, spectrum sensing plays a vital role in sensing the existence of the primary user (PU). The sensing performance is badly affected by fading and shadowing in case of single secondary user(SU). To overcome this issue, cooperative spectrum sensing (CSS) is proposed. Although the reliability of the system is improved with cooperation but existence of malicious user (MU) in the CSS deteriorates the performance. In this work, we consider the Kullback-Leibler (KL) divergence method for minimizing spectrum sensing data falsification (SSDF) attack. In the proposed CSS scheme, each SU reports the fusion center(FC) about the availability of PU and also keeps the same evidence in its local database. Based on the KL divergence value, if the FC acknowledges the user as normal, then the user will send unified energy information to the FC based on its current and previous sensed results. This method keeps the probability of detection high and energy optimum, thus providing an improvement in performance of the system. Simulation results show that the proposed KL divergence method has performed better than the existing equal gain combination (EGC), maximum gain combination (MGC) and simple KL divergence schemes in the presence of MUs.
منابع مشابه
Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks: An Analytical Model for Evaluation and Mitigation of Performance Degradation
Cognitive Radio (CR) networks enable dynamic spectrum access and can significantly improve spectral efficiency. Cooperative Spectrum Sensing (CSS) exploits the spatial diversity between CR users to increase sensing accuracy. However, in a realistic scenario, the trustworthy of CSS is vulnerable to Spectrum Sensing Data Falsification (SSDF) attack. In an SSDF attack, some malicious CR users deli...
متن کاملAn Effective and Optimal Fusion Rule in the Presence of Probabilistic Spectrum Sensing Data Falsification Attack
Cognitive radio (CR) network is an excellent solution to the spectrum scarcity problem. Cooperative spectrum sensing (CSS) has been widely used to precisely detect of primary user (PU) signals. The trustworthiness of the CSS is vulnerable to spectrum sensing data falsification (SSDF) attack. In an SSDF attack, some malicious users intentionally report wrong sensing results to cheat the fusion c...
متن کاملAttack-Aware Cooperative Spectrum Sensing in Cognitive Radio Networks under Byzantine Attack
Cooperative Spectrum Sensing (CSS) is an effective approach to overcome the impact of multi-path fading and shadowing issues. The reliability of CSS can be severely degraded under Byzantine attack, which may be caused by either malfunctioning sensing terminals or malicious nodes. Almost, the previous studies have not analyzed and considered the attack in their models. The present study introduc...
متن کاملSecure Collaborative Spectrum Sensing in the Presence of Primary User Emulation Attack in Cognitive Radio Networks
Collaborative Spectrum Sensing (CSS) is an effective approach to improve the detection performance in Cognitive Radio (CR) networks. Inherent characteristics of the CR have imposed some additional security threats to the networks. One of the common threats is Primary User Emulation Attack (PUEA). In PUEA, some malicious users try to imitate primary signal characteristics and defraud the CR user...
متن کاملInvestigation of Always Present and Spectrum Sensing based Incumbent Emulators
Cognitive radio (CR) technology has been suggested for effective use of spectral resources. Spectrum sensing is one of the main operations of CR users to identify the vacant frequency bands. Cooperative spectrum sensing (CSS) is used to increase the performance of CR networks by providing spatial diversity. The accuracy of spectrum sensing is the most important challenge in the CSS process sinc...
متن کامل